Stella (...e una stella fa luce senza troppi perché)

« Older   Newer »
 
  Share  
.
  1. Streguccia
        +1   -1
     
    .
    Avatar

    Juventina nel sangue!!!

    Group
    FOUNDER
    Posts
    39,697

    Status
    Anonymous
    Le stelle più antiche (dette di Popolazione II) sono costituite da idrogeno (per circa il 75%), elio (per circa il 25%) ed una frazione molto piccola (<0,1%) di metalli. Nelle stelle più giovani (dette di Popolazione I), invece, la percentuale di metalli sale fino a circa il 2% - 3%, mentre l'idrogeno ed elio hanno percentuali rispettivamente dell'ordine del 70% - 75% e 24% - 27%. Queste differenze sono dovute al fatto che le nubi molecolari, da cui le stelle si originano, sono costantemente arricchite dagli elementi pesanti diffusi dalle esplosioni delle supernovae. La determinazione della composizione chimica di una stella può essere, quindi, utilizzata per determinare la sua età.

    La frazione di elementi più pesanti dell'elio è generalmente misurata sulla base delle quantità di ferro contenute nell'atmosfera stellare, dato che il ferro è un elemento abbastanza comune e le sue linee di assorbimento sono piuttosto facili da identificare. La quantità degli elementi pesanti è anche indice della probabile presenza di un sistema planetario in orbita attorno alla stella.

    La stella col minor contenuto di ferro mai misurato è la nana HE1327-2326, con appena un duecentomillesimo del contenuto ferroso del Sole. Al contrario, la stella µ Leonis è ricchissima in "metalli", con una metallicità circa il doppio di quella del Sole, mentre 14 Herculis, attorno alla quale orbita un pianeta (14 Herculis b), ha una metallicità tre volte superiore. Alcune stelle, dette stelle peculiari, mostrano nel proprio spettro un'insolita abbondanza di metalli, specialmente cromo e lantanidi (le cosiddette terre rare).

    La metallicità influenza inoltre la durata della sequenza principale, l'intensità del campo magnetico e del vento stellare. Le vecchie stelle di popolazione II hanno una metallicità minore delle più giovani stelle di popolazione I, poiché le nubi molecolari da cui si sono formate queste ultime possedevano una maggiore quantità di metalli.


    Dimensioni apparenti e reali

    A causa della grande distanza dalla Terra, tutte le stelle, eccetto il Sole, appaiono all'occhio umano come dei minuscoli punti brillanti nel cielo notturno, scintillanti a causa degli effetti distorsivi dell'atmosfera terrestre. Il Sole invece, pur essendo esso stesso una stella, è abbastanza vicino al nostro pianeta da apparire come un disco che illumina il nostro pianeta dando luogo al giorno.

    800px-Sun_and_VY_Canis_Majoris_it.svg
    Schema in cui sono messe a confronto le dimensioni del Sole e di VY Canis Majoris, la stella più grande conosciuta.

    Oltre al Sole, la stella con la maggiore grandezza apparente è R Doradus, con un diametro angolare di soli 0,057 secondi d'arco.

    Le dimensioni angolari del disco di gran parte delle stelle sono troppo piccole per permettere l'osservazione delle strutture superficiali attive (come le macchie) con gli attuali telescopi ottici di terra; pertanto l'unico modo per riprodurre immagini di tali caratteristiche è l'utilizzo di telescopi interferometrici. È possibile misurare le dimensioni angolari delle stelle anche durante le occultazioni, valutando il calo di luminosità di una stella mentre essa è occultata dalla Luna o l'aumento di luminosità della stessa al termine dell'occultazione.

    Le dimensioni reali delle stelle sono estremamente variabili: le più piccole, le stelle di neutroni, hanno dimensioni comprese tra 20 e 40 km, mentre le più grandi, ipergiganti e supergiganti, hanno raggi vastissimi, con dimensioni dell'ordine delle Unità Astronomiche: ad esempio quello di Betelgeuse (a Orionis) è 630 volte quello del Sole, circa un miliardo di km (quasi 6,7 UA);[35] tali stelle possiedono tuttavia densità decisamente inferiori a quella del nostro Sole, tanto che la loro atmosfera è assimilabile ad un vuoto spinto. La stella più grande conosciuta è VY Canis Majoris, il cui diametro è quasi 2000 volte quello del Sole: se si trovasse al centro del Sistema solare, la sua atmosfera si estenderebbe sino all'orbita di Saturno.

    600px-EtaCarinae
    Eta Carinae (circondata dalla Nebulosa Omuncolo) possiede una massa circa 150 volte quella del Sole. (HST)

    Massa

    Le stelle sono oggetti dotati di una massa considerevole, compresa tra 1,5913 × 1029 e 3,9782 × 1032 kg; in unità solari, da 0,08 a 150–200 masse solari (M?).

    Una delle stelle più massicce conosciute è l'ipergigante LBV Eta Carinae,la cui massa è stimata in 100–150 M?; tuttavia una simile massa comporta una sensibile riduzione della vita dell'astro, che vive al massimo per alcuni milioni di anni. Uno studio condotto sulle stelle dell'ammasso Arches suggeriva che 150 M? fosse il limite massimo raggiungibile da una stella nell'attuale era dell'Universo.La ragione di questo limite non è ancora nota; gli astronomi tuttavia ritengono che ciò sia dovuto in buona parte alla metallicità dell'astro, ma soprattutto al limite di Eddington, che definisce la quantità massima di radiazione luminosa in grado di attraversare gli strati della stella senza provocarne l'espulsione nello spazio. Tuttavia, la scoperta di una stella con una massa di gran lunga superiore a questo limite, R136a1 nella Grande Nube di Magellano (con una massa ipotizzata in circa 265 M?), impone agli astronomi una revisione teorica del valore del limite massimo di massa stellare.

    Le prime stelle, formatesi qualche centinaia di migliaia di anni dopo il Big Bang, dovevano possedere delle masse ancora maggiori (forse oltre 300 M? ) per via della totale assenza al proprio interno di elementi più pesanti del litio. Questa primitiva generazione di stelle supermassicce (dette di popolazione III) si è estinta già da miliardi di anni, per cui gli astronomi sono in grado di formulare esclusivamente delle congetture sulla base dei dati attualmente in loro possesso.

    Con una massa appena 93 volte quella di Giove, la nana rossa AB Doradus C, membro del sistema stellare di AB Doradus, è invece la stella meno massiccia conosciuta ad essere alimentata dalle reazioni nucleari. Gli astronomi ritengono che per le stelle dotate di una metallicità simile a quella del Sole la massa minima per innescare la fusione nucleare sia di circa 75 masse gioviane. Un recente studio, condotto sulle stelle meno massicce, ha permesso di scoprire che, se la metallicità è molto bassa, la massa minima perché un astro possa produrre energia tramite la fusione nucleare corrisponde a circa l' 8,3% della massa solare (circa 87 masse gioviane). Una particolare tipologia di oggetti, che prende il nome di nane brune, costituisce l'anello di congiunzione tra le stelle nane ed i pianeti giganti gassosi: la loro massa non è sufficiente ad innescare le reazioni nucleari, ma è comunque nettamente superiore a quella di un gigante gassoso.


    Gravità superficiale

    La combinazione di raggio e massa determina la gravità superficiale della stella. Le stelle giganti hanno una gravità decisamente minore di quella delle stelle di sequenza principale, che a loro volta hanno una gravità inferiore a quella delle stelle degeneri (nane bianche e stelle di neutroni). Tale caratteristica è in grado di influenzare l'aspetto di uno spettro stellare, causando talvolta un allargamento o uno spostamento delle linee di assorbimento.

    Barnard2005
    Spostamento della Stella di Barnard negli anni compresi tra il 1985 ed il 2005.

    Moti spaziali

    I moti di una stella rispetto al Sole possono fornire utili informazioni sulla sua origine e sulla sua età, come pure sulla struttura complessiva e sull'evoluzione del resto della Galassia. Le componenti del moto di una stella sono la velocità radiale (che può essere in avvicinamento o allontanamento dal Sole) ed il moto proprio (il movimento angolare trasversale).

    La velocità radiale si basa sullo shift (lo spostamento secondo l'effetto Doppler) delle linee spettrali ed è misurata in km/s. Il moto proprio è determinato da precise misure astrometriche (dell'ordine dei milliarcosecondi - mas - all'anno), e può essere convertito in unità di misura della velocità attraverso la misura della parallasse. Le stelle che presentano dei grandi valori di moto proprio sono i più vicini al Sistema solare e pertanto si prestano in maniera ottimale alla rilevazione della parallasse.

    Conosciuti moto proprio, velocità radiale e parallasse, è possibile calcolare la velocità spaziale di una stella in relazione al Sole o alla Galassia. Si è scoperto tra le stelle vicine che le stelle di popolazione I hanno in genere velocità minori delle più antiche stelle di popolazione II; queste ultime inoltre orbitano attorno al centro della Via Lattea secondo traiettorie ellittiche, inclinate verso il piano galattico. La comparazione dei moti di stelle vicine ha anche portato all'identificazione delle associazioni stellari, gruppi di stelle che condividono un medesimo punto di origine in una nube molecolare gigante.

    La stella col più alto valore conosciuto di moto proprio è la Stella di Barnard, una nana rossa della costellazione dell'Ofiuco.

    Tausco
    Ricostruzione computerizzata del particolare campo magnetico superficiale di t Scorpii, una stella massiccia, ricostruito tramite lo Zeeman-Doppler imaging.

    Campo magnetico

    Il campo magnetico di una stella è generato all'interno della sua zona convettiva, nella quale il plasma, messo in movimento dai moti convettivi, si comporta come una dinamo. L'intensità del campo varia in relazione alla massa e alla composizione della stella, mentre l'attività magnetica dipende dalla sua velocità di rotazione. Un risultato dell'attività magnetica sono le caratteristiche macchie fotosferiche, regioni a temperatura inferiore rispetto al testo della fotosfera in cui il campo magnetico si presenta particolarmente intenso. Altri fenomeni strettamente dipendenti dal campo magnetico sono gli anelli coronali ed i flare.

    Le giovani stelle, che tendono ad avere una velocità di rotazione molto alta, hanno un'attività magnetica molto intensa. I campi magnetici possono influire sui venti stellari arrivando ad agire come dei "freni" che rallentano progressivamente la rotazione della stella man mano che essa compie il proprio percorso evolutivo. Per questo motivo le stelle non più giovani, come il Sole, compiono la propria rotazione in tempi più lunghi e presentano un'attività magnetica meno intensa. I loro livelli di attività tendono a variare in maniera ciclica e possono cessare completamente per brevi periodi di tempo; un esempio fu il minimo di Maunder, durante il quale il Sole andò incontro ad un settantennio di attività minima, in cui il numero delle macchie fu esiguo, se non quasi assente per diversi anni.

    Achernar
    L'aspetto deformato di Achernar (a Eridani) è causato dalla sua rapida rotazione.

    Rotazione

    La rotazione stellare è il movimento angolare di una stella sul proprio asse di rotazione, la cui durata può essere misurata in base al suo spettro o in maniera più accurata monitorando il periodo di rotazione delle strutture attive superficiali (macchie stellari).

    Le giovani stelle hanno una rapida velocità di rotazione, superiore spesso a 100 km/s all'equatore; ad esempio Achernar (a Eridani), una stella di classe spettrale B, ha una velocità di rotazione all'equatore di circa 225 km/s o superiore, il che conferisce all'astro un aspetto schiacciato, con il diametro equatoriale più largo del 50% rispetto al diametro polare. Tale velocità di rotazione è di poco inferiore alla velocità critica di 300 km/s, raggiunta la quale la stella arriverebbe a frantumarsi; il Sole, di contro, compie una rotazione completa ogni 25 – 35 giorni, con una velocità angolare all'equatore di 1,994 km/s. Il campo magnetico ed il vento della stella svolgono un'azione frenante sulla sua rotazione man mano che essa si evolve lungo la sequenza principale, arrivando a rallentarla, lungo questo arco di tempo, anche in maniera significativa.

    Le stelle degeneri hanno una massa elevata ed estremamente densa; ciò comporta una velocità di rotazione elevata, ma non sufficiente a raggiungere la velocità in grado di favorire la conservazione del momento angolare, cioè la tendenza di un corpo in rotazione a compensare una contrazione nelle dimensioni con una crescita nella velocità di rotazione. La perdita di gran parte del momento angolare da parte della stella è il risultato della perdita di massa attraverso il vento stellare. Fanno eccezione le stelle di neutroni, che, manifestandosi come sorgenti radio pulsanti (pulsar), possono avere delle velocità di rotazione elevatissime; la pulsar del Granchio (posta all'interno della Nebulosa del Granchio), ad esempio, ruota 30 volte al secondo. La velocità di rotazione di una pulsar è però destinata a diminuire nel corso del tempo, a causa della continua emissione di radiazioni.

    Dgrhr
    Diagramma H-R in cui è evidente la temperatura di ciascuna classe spettrale.

    Temperatura

    La temperatura superficiale di una stella di sequenza principale è determinata dalla quantità di energia che viene prodotta nel nucleo e dal raggio del corpo celeste. Un valido strumento per la sua misurazione è l'indice di colore,che è normalmente associato alla temperatura effettiva, vale a dire la temperatura di un corpo nero ideale che irradia la propria energia con una luminosità per area superficiale simile a quella della stella presa in considerazione. La temperatura effettiva è però solamente un valore rappresentativo: le stelle possiedono un gradiente di temperatura che diminuisce all'aumentare della distanza dal nucleo, la cui temperatura raggiunge valori di decine di milioni (talvolta persino miliardi) di kelvin (K).

    La temperatura della stella determina l'entità della ionizzazione dei differenti elementi che la compongono, ed è pertanto misurata a partire dalle caratteristiche linee di assorbimento dello spettro stellare. Temperatura superficiale e magnitudine assoluta sono utilizzate nella classificazione stellare.

    Le stelle più massicce hanno temperature superficiali molto elevate, che possono arrivare fino a 50 000 K, mentre le stelle meno massicce, come il Sole, hanno temperature nettamente inferiori, che non superano qualche migliaio di Kelvin. Le giganti rosse hanno temperatura superficiale molto bassa, di circa 3 600-2 800 K, ma appaiono molto luminose poiché la loro superficie radiante possiede un'area estremamente vasta.

    424px-Fusion_in_the_Sun_it.svg
    Schema della catena protone-protone.

    600px-CNO_Cycle_it.svg
    Schema del ciclo CNO.


    Meccanismi delle reazioni nucleari

    Una grande varietà di reazioni nucleari ha luogo all'interno dei nuclei stellari e, in base alla massa e alla composizione chimica dell'astro, dà origine a nuovi elementi secondo un processo generalmente noto come nucleosintesi stellare. Durante la sequenza principale le reazioni prevalenti sono quelle di fusione dell'idrogeno, in cui quattro nuclei di idrogeno (ciascuno costituito da un solo protone) si fondono per formare un nucleo di elio (due protoni e due neutroni). La massa netta dei nuclei di elio è però minore della massa totale dei nuclei di idrogeno iniziali, e la conseguente variazione dell'energia di legame nucleare produce un rilascio di energia quantificabile per mezzo dell'equazione massa-energia di Albert Einstein, E = mc².

    Il processo di fusione dell'idrogeno è sensibile alla temperatura, perciò anche il minimo sbalzo termico si riflette sulla velocità a cui avvengono le reazioni. Di conseguenza la temperatura dei nuclei delle stelle di sequenza principale ha dei valori, variabili da stella a stella, che vanno da un minimo di 4 milioni di K (nelle nane rosse) ad un massimo di 40 milioni di K (stelle massicce di classe O).

    Nel Sole, il cui nucleo raggiunge i 10-15 milioni di K, l'idrogeno è fuso secondo un ciclo di reazioni noto come catena protone-protone.

    L'energia rilasciata da queste reazioni è espressa in milioni di elettronvolt, ed è solo una minima parte dell'energia complessivamente liberata. La concomitanza di un gran numero di queste reazioni, che avvengono continuamente e senza sosta sino all'esaurimento dell'idrogeno, genera l'energia necessaria per sostenere la fuoriuscita delle radiazioni prodotte.

    Nelle stelle più massicce, la fusione non è effettuata tramite la catena protone-protone, ma tramite il ciclo del carbonio-azoto-ossigeno (ciclo CNO), un processo più "efficiente", ma altamente sensibile alla temperatura, che richiede almeno 40 milioni di K per poter avvenire.

    I nuclei di elio delle stelle più evolute, che abbiano masse comprese tra 0,5 e 10 masse solari, hanno temperature prossime ai 100 milioni di K, tali da permettere di convertire questo elemento in carbonio per mezzo del processo tre alfa, un processo nucleare che si serve come elemento intermediario del berillio.

    Le stelle più massicce sono in grado di fondere anche gli elementi più pesanti, in un nucleo in progressiva contrazione, tramite i diversi processi nucleosintetici, specifici per ciascun elemento: il carbonio, il neon e l'ossigeno. La fase finale della nucleosintesi di una stella massiccia è la fusione del silicio, che comporta la sintesi dell'isotopo stabile ferro-56; la fusione del ferro è un processo endotermico, che non può più andare avanti se non acquisendo energia: di conseguenza, le reazioni nucleari si arrestano ed il collasso gravitazionale non è più contrastato dalla pressione di radiazione; la stella, come già visto, esplode ora in supernova.

    La tabella sottostante riporta il tempo che una stella di massa 20 volte quella solare impiega per fondere il proprio combustibile nucleare. Si tratta di una stella di classe O, con un raggio 8 volte quello del Sole ed una luminosità 62 000 volte quella della nostra stella.

    Combustibile

    nucleare
    Temperatura

    (in milioni di K)
    Densità

    (kg/cm³)
    Durata della fusione

    (τ in anni)
    H370,00458,1 milioni
    He1880,971,2 milioni
    C870170976
    Ne1 5703 1000,6
    O1 9805 5501,25
    S/Si3 34033 4000,0315


    589px-Ngc1999
    La nebulosa a riflessione NGC 1999 è irradiata dalla variabile V380 Orionis (al centro), stella di 3,5 M? (Immagine HST).

    Radiazione stellare

    L'energia prodotta tramite le reazioni nucleari viene irradiata nello spazio sotto forma di onde elettromagnetiche e particelle; queste ultime vanno a costituire il vento stellare,costituito da particelle sia provenienti dagli strati esterni della stella, come protoni liberi, particelle alfa, beta e ioni di diverso tipo, sia dall'interno stellare, come i neutrini.

    La produzione di energia nel nucleo stellare è il motivo per il quale le stelle appaiono così brillanti: in ogni momento due o più nuclei atomici vengono fusi assieme a formarne uno più pesante, mentre viene liberata una grande quantità di energia tramite radiazioni gamma. Durante l'attraversamento degli strati più esterni la radiazione gamma perde gradualmente energia trasformandosi in altre forme meno energetiche di radiazione elettromagnetica, tra cui la luce visibile.

    Oltre che alle lunghezze d'onda del visibile, una stella emette radiazioni anche alle altre lunghezze dello spettro elettromagnetico invisibili all'occhio umano, dai raggi gamma alle onde radio, passando per i raggi X, l'ultravioletto, l'infrarosso e le microonde.

    Nota la distanza esatta di una stella dal Sistema solare, ad esempio tramite il metodo della parallasse, è possibile ricavare la luminosità della stella.

    Pistol_star_and_nebula
    La Stella Pistola (in quest'immagine di HST con la Nebulosa Pistola) è una delle stelle più luminose conosciute: infatti irradia nell'arco di 20 secondi la stessa energia che il Sole irradierebbe in un anno.

    Luminosità

    In astronomia la luminosità è definita come la quantità di luce e di altre forme di energia radiante emessa da una stella per unità di tempo; essa dipende strettamente dal raggio e dalla temperatura superficiale della stella. Approssimando la stella a un corpo nero ideale, la luminosità (L) è direttamente proporzionale al raggio (R) e alla temperatura effettiva (Teff); tali parametri, messi in relazione tra loro, danno l'equazione:

    L = 4 \pi R^2 \sigma T_{eff}^4

    dove 4pR2 indica la superficie della stella (approssimata a una sfera) e s la costante di Stefan-Boltzmann.

    Sono molte, tuttavia, le stelle che non emanano un flusso energetico (vale a dire la quantità di energia irradiata per unità di superficie) uniforme attraverso la propria superficie; ad esempio Vega, che ruota molto velocemente sul proprio asse, emette un flusso maggiore ai poli che non all'equatore.

    Le macchie stellari sono zone della fotosfera che appaiono poco luminose per via della temperatura inferiore al resto della superficie. Le stelle più grandi, le giganti, possiedono macchie molto vaste e pronunciate e mostrano un importante oscuramento al bordo, vale a dire la luminosità diminuisce man mano che si procede verso il bordo del disco stellare; le stelle più piccole invece, le nane come il Sole, hanno in genere poche macchie, tutte di piccole dimensioni; fanno eccezione le nane rosse a brillamento del tipo UV Ceti, che possiedono delle macchie molto vaste.


    Magnitudine

    La luminosità di una stella è misurata tramite la magnitudine, distinta in apparente ed assoluta. La magnitudine apparente misura la luminosità della stella percepita dall'osservatore; essa dipende dunque dalla luminosità reale della stella, dalla sua distanza dalla Terra e dalle alterazioni provocate dall'atmosfera terrestre (seeing). La magnitudine assoluta o intrinseca è la magnitudine apparente che la stella avrebbe se si trovasse alla distanza di 10 parsec (32,6 anni luce) da Terra, ed è strettamente correlata alla luminosità reale della stella.

    Continua.........
     
    Top
    .
4 replies since 26/7/2011, 08:20   1895 views
  Share  
.
Top